quarta-feira, 28 de agosto de 2019


Em física, a lei de Rayleigh-Jeans, primeiramente proposta no início do século XX, com o objetivo de descrever a radiação espectral da radiação eletromagnética de todos os comprimentos de onda desde um corpo negro a uma temperatura dada. Expressa a densidade de energia de um radiação de corpo negro de comprimento de onda λ como[1]
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
também sendo escrita na forma
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde λ está em metrosc é a velocidade da luzT é a temperatura em Kelvins, e k é a constante de Boltzmann.
A lei é derivada de argumentos da física clássicaLord Rayleigh obteve pela primeira vez o quarto grau da dependência do comprimento de onda em 1900; uma derivação mais completa, a qual incluia uma constante de proporcionalidade, foi apresentada por Rayleigh e Sir James Jeans em 1905. Esta agregava umas medidas experimentais para comprimentos de onda. Entretanto, esta predizia uma produção de energia que tendia ao infinito já que o comprimento de onda se fazia cada vez menor. Esta idéia não se sustentava pelos experimentos e a falta se conheceu como a "catástrofe ultravioleta"; entretanto, não foi, como as vezes se afirma nos livros-texto de física, uma motivação para a teoria quântica.
A lei concorda com medições experimentais para grandes comprimentos de onda mas discorda para comprimentos de onda pequenos.
Em 1900 Max Planck revisou a lei, obtendo uma lei um tanto diferente, a qual estabeleceu:
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
que pode ser escrita também na forma
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde h é a constante de Planck e c é a velocidade da luz. Esta é a Lei de Planck expressa em termos de comprimento de onda λ = /ν. A lei de Planck não sofre de uma "catástrofe ultravioleta", e assim de acordo com os dados experimentais, mas seu pleno significado só se apreciaria vários anos mais tarde. No limite de temperaturas muito altas ou grandes comprimentos de onda, no termo exponencial se converte no pequeno, pelo que o denominador se converte em aproximadamente hc / kT λ série de potências de expansão. Isto lhe dá o nome de Lei de Rayleigh-Jeans.



Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
A tabela seguinte descreve as variáveis e unidades utilizadas:
VariávelDescriçãoUnidade
radiância espectralJ•s−1•m−2•sr−1•Hz−1
frequênciahertz
temperatura do corpo negrokelvin
constante de Planckjoule / hertz
velocidade da luz no vácuometros / segundo
número de Eulersem dimensão
constante de Boltzmannjoule / kelvin
O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Pode-se escrever a Lei de Planck em termos de energia espectral:
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
A energia espectral também pode ser expressa como função do comprimento de onda:
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação  [1]:
 .
Planck assumiu a essa quantização, cinco anos depois de Albert Einstein ter sugerido a existência de fótons como um meio de explicar o efeito fotoelétrico. Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiança tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.


Lei de Stefan ou Lei de Stefan-Boltzmann[editar | editar código-fonte]

Nos seus estudos da radiação de corpo negro Joseph Stefan chegou a seguinte função:[8]
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Onde
 = Área de emissão do corpo negro.
 = Potência irradiada por unidade de área (W/m²).
 = Potência total irradiada (W).
 = 5,6705x10-8W/m².K⁴ — também chamada de constante de Stefan.
 = Temperatura (K).
Esta expressão mostra que a potência irradiada por unidade de área varia apenas com a temperatura, ela não depende do material de sua cor entre outras características do corpo. O valor de R também indica a rapidez com a qual o corpo emite energia, por exemplo se a temperatura for triplicada a energia emitida será aumentada (3⁴=81) vezes ou se for quadruplicada a nova emissão será aumentada (4⁴=256) vezes. Corpos reais irradiam menos energia por unidade de área que o corpo negro, para calcular a energiairradiada por esses corpos é necessária a inclusão de um parâmetro denominado emissividade ε, a emissividade depende das características do material (cor, composição de sua superfície), seu valor fica entre zero e um.

Lei de deslocamento de Wien[editar | editar código-fonte]

O gráfico mostra o deslocamento dos picos de emissão do corpo negro; o produto da temperatura pelo comprimento de onda máximo se mantém constante com valor 2,898 x 10-3 m.K
A emissão de radiação do corpo negro apresenta uma distribuição espectral que depende apenas da temperatura . Seja  a potência emitida por unidade de área compreendida entre . A figura 2 mostra valores da distribuição espectral  em função de  para muitos valores de  entre 3500K e 5500K.
Foi Wien quem pela primeira vez observou que o comprimento de onda máximo emitido era inversamente proporcional a temperatura do corpo negro e escreveu a equação que recebeu seu nome.[8]
.
 = Comprimento de onda para o qual a emissão por unidade de área é máxima (m).
 = Temperatura do corpo negro (K).

Teoria de Planck da radiação de corpo negro[editar | editar código-fonte]

Question book.svg
Esta seção não cita fontes confiáveis e independentes (desde julho de 2018). Ajude a inserir referências.
O conteúdo não verificável pode ser removido.—Encontre fontes: Google (notíciaslivros e acadêmico)
Ao tentar solucionar a discrepância entre a teoria e a experiência, Planck foi levado a considerar a hipótese de uma violação da lei da equipartição da energia sobre o qual a teoria se baseava. Planck supôs que a energia poderia ter apenas certos valores discretos, em vez de qualquer valor, e que os valores discretos fossem uniformemente distribuídos. Isto é, tomou
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
como o conjunto de valores possíveis da energia. Aqui é o intervalo constante entre valores possíveis sucessivos da energia. Planck supôs também que as energias sucessivas e a frequência da radiação emitida fossem grandezas proporcionais, portanto,
Escrito na forma de uma equação em vez de uma proporcionalidade, temos
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde é a constante de proporcionalidade.
Cálculos posteriores permitiram a Planck determinar o valor da constante , obtendo o valor que ajustava melhor sua teoria aos dados experimentais. O valor obtido por ele estava bem próximo do valor atualmente aceito
Esta constante, muito famosa e corrente na mecânica quântica, é chamada constante de Planck.
A fórmula obtida o permitiu calcular o espectro de corpo negro em total acordo com os resultados experimentais.

Postulado de Planck[editar | editar código-fonte]

A contribuição de Planck pode ser colocada na forma do seguinte postulado:
Qualquer ente físico com um grau de liberdade cuja "coordenada" é uma função senoidal do tempo (isto é, executa oscilações harmônicas simples) pode possuir apenas energias totais que satisfaçam a relação onde é a frequência da oscilação, uma constante universal e  só pode assumir valores inteiros.
A energia do ente que obedece ao postulado de Planck é dita quantizada, os estados de energia possíveis são ditos estados quantizados, e o  é dito número quântico.[9]

Implicações[editar | editar código-fonte]

A ideia de que a energia é quantizada apesar de parecer apenas um truque matemático para explicar os resultados experimentais da radiação de corpo negro, foi fundamental para o desenvolvimento de um dos pilares da física moderna, a mecânica quântica.



Lei de Wien relaciona o comprimento de onda em que há máxima emissão de radiação de corpo negro com uma temperatura e determina que o comprimento de onda emitido diminui com o aumento da temperatura:
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde
 é o comprimento de onda (em metros) no qual a intensidade da radiação eletromagnética é a máxima;
 é a temperatura do corpo negro em Kelvin (K), e
 é a constante de proporcionalidade, chamada constante de dispersão de Wien, em Kelvin-metros (K • m).
Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro e fornece a distribuição dos comprimentos de onda no espectro em função da temperatura. A maior parte da irradiação ocorre em um comprimento de onda específico, chamado de comprimento de onda principal de irradiação, que depende da temperatura do corpo. Quanto maior a temperatura, maior a frequência da radiação e menor é o comprimento de onda:
x

ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X

x
TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde
 é a radiância espectral medida em J•s−1•m−2•sr−1•Hz−1
 é a frequência medida em Hertz (Hz)
 é a temperatura do corpo negro medida em Kelvin (K)
 é a constante de Planck medida em Joule por Hertz (J/Hz)
 é a constante velocidade da luz medida em metros por segundo (m/s)
 é o número de Euler
 é a constante de Boltzmann medida em Joule por Kelvin (J/K)
Relacionando com o espectro visível, devido ao comprimento de onda, objetos com temperaturas altas produzem luz de coloração próxima ao azul, enquanto objetos com temperaturas não tão altas podem gerar luz avermelhada (a faixa do espectro seguinte à visível é justamente o infravermelho). Por exemplo, um objeto vermelho quente irradia principalmente ondas longas da faixa visível do espectro (luzes avermelhada e alaranjada). Se for aquecido, passará a emitir menores comprimentos de onda (luzes azulada e esverdeada), e a distribuição das frequências faz a luz parecer branca aos olhos humanos. Esse efeito é chamado de "branco quente". Entretanto, mesmo em temperaturas superiores a 2000 K, 99% da energia irradiada está na faixa do infravermelho do espectro. Em outros casos, a matéria pode irradiar comprimentos de onda que não podem ser vistos pelo olho humano, como quando a temperatura é relativamente baixa ou extremamente alta.

Lei de Stefan-Boltzmann[editar | editar código-fonte]

Ver artigo principal: Lei de Stefan-Boltzmann
Lei de Stefan-Boltzmann: a energia total emitida por um corpo é diretamente proporcional à quarta potência de sua temperatura. Em azul, o gráfico da energia total emitida calculado por Wien.





Lei de Stefan-Boltzmann estabelece que a energia total irradiada por unidade de área superficial de um corpo negro, na unidade de tempo (radiação do corpo negro), ou densidade de fluxo energético, indicada por j*, é diretamente proporcional à quarta potência da sua temperatura absoluta:
[7]
onde:
 é a energia total irradiada por um corpo negro por unidade de área, medida em Watts por metro quadrado (W / m2)
 é a temperatura do corpo em Kelvin (K)
 é a constante de Stefan-Boltzmann